
PROGRAM FOR THE

CATALYSIS CLUB OF CHICAGO

2021 SYMPOSIUM

MAY 13TH AND 14TH, 2021

VIRTUAL MEETING

HELD VIA ZOOM

Schedule

Day 1 (Thursday, May 13th, 2021) – All times listed in CDT

Main Zoom Link (Day 1)

Morning Session: Heterogeneous (moderated by: Raj Gounder and Dave Kaphan)

10:00 **Opening Remarks**

10:10 **Keynote Address #1: Controlling Selectivity in Oxidative Conversion of Organic Molecules**

Prof. Prashant Deshlahra, Tufts University

11:00 **Oral Talk #1: Solvent Molecules Form Surface Redox Mediators in situ and Cocatalyze O₂ Reduction on Pd**

Jason S. Adams, University of Illinois at Urbana-Champaign

11:25 **Oral Talk #2: Ni and Co Based Metal Phosphides as Non-Noble Metal Ethane Dehydrogenation Catalysts**

Jessica A. Muhlenkamp, University of Notre Dame

11:50 **Vendor Talk #1: Anton Paar**

12:00 *Break*

12:10 **Poster and Networking Session #1**

Please join the poster session in Spatialchat

See Table of Contents (pages [8-12](#)) for individual poster abstracts

14:00 *Break*

Afternoon Session: Theory (moderated by: Raj Gounder and Dave Kaphan)

14:10 **Keynote Address #2: Interaction of Water with Active Sites and Its Relevance in Catalysis**

Prof. Bin Wang, University of Oklahoma

15:00 **Oral Talk #3: Rationalizing Ethylene Oligomerization on Single-site Ga³⁺ Catalysts Supported on Amorphous Silica: a First Principles Analysis Combined with Microkinetic Modeling and Experiments**

Yinan Xu, Purdue University

15:25 **Oral Talk #4: How to write the rate of A* + A***

Neil K. Razdan, University of Minnesota

15:50 **Vendor Talk #2: Unchained Labs**

16:00 **Closing Remarks**

Schedule

Day 2 (Friday, May 14th, 2021) – All times listed in CDT

Main Zoom Link (Day 2)

Morning Session: Electrocatalysis (moderated by: Raj Gounder and Dave Kaphan)

10:00 **Opening Remarks**

10:10 **Keynote Address #3: Understanding Mechanisms in Electrocatalytic Syntheses with Renewable Feedstocks**

Prof. Adam Holewinski, University of Colorado – Boulder

11:00 **Oral Talk #5: Relationship between Aerobic Oxidation Catalysis and Electrochemical O₂ Reduction on Heterogeneous M–N–C Catalysts**

Jason S. Bates, University of Wisconsin – Madison

11:25 **Oral Talk #6: Probing relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction**

Brianna N. Ruggiero, Northwestern University

11:50 **Vendor Talk #3: Micromeritics**

12:00 *Break*

12:10 **Poster and Networking Session #2**

Please join the poster session in Spatialchat

See Table of Contents (pages [8-12](#)) for individual poster abstracts

14:00 *Break*

Afternoon Session: (moderated by: Raj Gounder and Dave Kaphan)

14:10 **Keynote Address #4: What Problems can Machine Learning Solve in Transition Metal Complex Discovery?**

Prof. Heather J. Kulik, Massachusetts Institute of Technology

15:00 **2021 Herman Pines Award Address: The Catalytic Mechanics of Dynamic Surfaces for Energy Technology**

Prof. Paul J. Dauenhauer, University of Minnesota

15:55 **Concluding Remarks, Announcement of Poster Prizes and Election Results**

Acknowledgements

The Catalysis Club of Chicago would like to thank the following people and organizations for their generous contributions to the success of the 2021 Symposium, including:

- Honeywell UOP for sponsoring the 2021 Herman Pines Award
- The Center for Catalysis and Surface Science at Northwestern University for making the Herman Pines Award plaque
- The North American Catalysis Society for their support of student involvement with the Chicago Catalysis Club
- Raj Gounder (Purdue University), Dave Kaphan (Argonne National Laboratory), Jason Adams (University of Illinois), Kenton Hicks (Northwestern University), Prajay Patel (Argonne National Laboratory), Pushkar Ghanekar (Purdue University), Siddarth Krishna (Purdue University), Melissa Cendejas (University of Wisconsin-Madison), and Hanyu Ma (University of Notre Dame) for their efforts in organizing this symposium

Academic Sponsors: Northwestern University, Purdue University, University of Illinois, University of Minnesota, University of Notre Dame

Industrial Exhibitors (see pages 75-76): Anton Paar, Micromeritics, and Unchained Labs

Grant Gavranovic
[E-Mail](#) | [LinkedIn](#)

Andy Labrousse
[E-Mail](#) | [LinkedIn](#)

Anthony Mitri
[E-Mail](#) | [LinkedIn](#)

Herman Pines Award in Catalysis - History

2021 Herman Pines Award in Catalysis

The Herman Pines Award is presented annually by the Catalysis Club of Chicago at its Spring Symposium for outstanding research in the field of catalysis. Herman Pines was an outstanding research scientist, and his work revolutionized the general understanding of organic chemistry, particularly the chemistry of hydrocarbons interacting with strong acids. The award in his honor is co-sponsored by UOP and the Catalysis Club of Chicago. Herman began his industrial career at UOP in 1930 and amassed 145 US patents over a 23-year period, and was a founding member of the Catalysis Club of Chicago.

List of past recipients of the Herman Pines Award:

1999	Harold Kung (Northwestern University)
2000	John Monnier (Eastman Chemical)
2001	Lanny Schmidt (University of Minnesota)
2002	James Brazdil (BP)
2003	James Dumesic (University of Wisconsin)
2004	Alak Bhattacharyya (BP)
2005	Israel Wachs (Lehigh University)
2006	Jeffrey Miller (BP)
2007	Chunshan Song (Pennsylvania State University)
2008	Aleksey Yezerets (Cummins)
2009	Tobin Marks (Northwestern University)
2010	James Rekoske (UOP)
2011	Jingguang Chen (University of Delaware)
2012	Stuart Soled (ExxonMobil)
2013	W. Nicholas Delgass (Purdue University)
2014	Hai-Ying Chen (Johnson Matthey)
2015	Fabio Ribeiro (Purdue University)
2016	Deng-Yang Jan (Honeywell UOP)
2017	Peter Stair (Northwestern University)
2018	Jerzy Klosin (Dow Chemical)
2019	Manos Mavrikakis (University of Wisconsin)
2020	Christopher Nicholas (UOP)
2021	Paul Dauenhauer (University of Minnesota)

Oral Presentations

Keynotes & Oral Presentations (in order of appearance)

Note: All oral presentations will be hosted through Zoom

<i>Title & Speaker</i>	<i>Page #</i>
Controlling Selectivity in Oxidative Conversion of Organic Molecules (Keynote) Prof. Prashant Deshlahra, Tufts University Twitter LinkedIn Website	13
Solvent Molecules Form Surface Redox Mediators in situ and Cocatalyze O₂ Reduction on Pd Jason S. Adams, University of Illinois at Urbana-Champaign	14
Ni and Co Based Metal Phosphides as Non-Noble Metal Ethane Dehydrogenation Catalysts Jessica A. Muhlenkamp, University of Notre Dame	15
Interaction of Water with Active Sites and Its Relevance in Catalysis (Keynote) Prof. Bin Wang, University of Oklahoma Twitter LinkedIn Website	16
Rationalizing Ethylene Oligomerization on Single-site Ga³⁺ Catalysts Supported on Amorphous Silica: a First Principles Analysis Combined with Microkinetic Modeling and Experiments Yinan Xu, Purdue University	17
How to write the rate of A* + A* Neil K. Razdan, University of Minnesota	18
Understanding Mechanisms in Electrocatalytic Syntheses with Renewable Feedstocks (Keynote) Prof. Adam Holewinski, University of Colorado – Boulder LinkedIn	19
Relationship between Aerobic Oxidation Catalysis and Electrochemical O₂ Reduction on Heterogeneous M–N–C Catalysts Jason S. Bates, University of Wisconsin – Madison Twitter LinkedIn	20
Probing relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction Brianna N. Ruggiero, Northwestern University	21
What Problems can Machine Learning Solve in Transition Metal Complex Discovery? (Keynote) Prof. Heather J. Kulik, Massachusetts Institute of Technology Twitter LinkedIn Website	22
2021 Herman Pines Award Address: The Catalytic Mechanics of Dynamic Surfaces for Energy Technology Prof. Paul J. Dauenhauer, University of Minnesota Twitter LinkedIn Website	23

Poster Presentations

Note: All poster presentations will be hosted in Spatialchat. Presenters should be at their poster during their session (shown under poster number in parentheses):

*Odd-numbered posters present on **Thursday (Th), May. 13th 12:10 – 2:00pm***

*Even-numbered posters present on **Friday (F), May. 14th 12:10 – 2:00pm***

Poster #	Title & Authors	Page #
1 <i>(Th)</i>	Joint DFT-Kinetic study of h-BN catalyzed Propane Oxidative Dehydrogenation <u>Theodore Agbi</u> and Ive Hermans	24
2 <i>(F)</i>	Supported Vanadium Catalysts for Oxidative Dehydrogenation of Propane with Sulfur as a Soft Oxidant <u>Allison M. Arinaga</u> , Selim Alayoglu, and Tobin J. Marks LinkedIn	26
3 <i>(Th)</i>	Oxidative Dehydrogenation of Ethane over M1 Phase Catalysts: Autothermal or Cooled Tubular Reactor Design? <u>Jiakang Chen</u> , Praveen Bollini, Vemuri Balakotaiah	27
4 <i>(F)</i>	Structural and chemical transformations of zinc oxide film and its mobility on palladium surface <u>Junxian Gao</u> , Kautstuh J. Sawant, Zhenghua Zeng, Dmitry Zemlyanov, Jeffrey P. Greeley, and Jeffrey T. Miller	28
5 <i>(Th)</i>	Inhibiting CO₂ Methanation and Promoting Methanol Synthesis with Bimetallic In-Ru <u>Feiyang Geng</u> , and Jason C. Hicks	29
6 <i>(F)</i>	Structural and chemical transformation of ZnO on Pd(111) : A case study for strong metal support interaction (SMSI) <u>Kautstuh J. Sawant</u> , Junxian Gao, Zhenghua Zeng, Dmitry Zemlyanov, Jeffrey P. Greeley, and Jeffrey T. Miller	30
7 <i>(Th)</i>	Tandem catalysis for coupling of propane dehydrogenation to selective H₂ combustion <u>Huan Yan</u> , Kun He, Izabela A. Samek, Dian Jing, Macy G. Nanda, Peter C. Stair, Justin M. Notestein	31
8 <i>(F)</i>	Reaction Pathways and Reactive Intermediates Responsible for Oxidative Cleavage of 4-Octene and Oleic Acid with H₂O₂ over Tungstates <u>Danim Yun</u> , E. Zeynep Ayla, Daniel T. Bregante, and David W. Flaherty	32

Oral Presentations

9 (<i>Th</i>)	High Throughput Screening of Alloy Structures for Propane Dehydrogenation Reaction <u>Ranga Rohit Seemakurthi</u> , Siddharth Deshpande, David Dean, Yinan Xu, Fabio H. Ribeiro, Jeffrey T. Miller, Jeffrey Greeley	33
10 (<i>F</i>)	Acidity and Activity Trends in SiO₂ Overcoated Oxides <u>Andrew T.Y. Wolek</u> , and Justin M. Notestein	34
11 (<i>Th</i>)	Active New Interfacial Sites Resulting from Strong Metal Oxide Support Interactions <u>Weiqiang Wu</u> and Eric Weitz	35
12 (<i>F</i>)	Site requirements and kinetics of ethane oxidative dehydrogenation over bulk NiO based catalysts <u>Xiaohui Zhao</u> , Qianyu Ning, Lars Grabow, Jeffrey Rimer, Praveen Bollini LinkedIn	36
13 (<i>Th</i>)	Lithium Ion Battery Materials as Tunable, Redox Non-Innocent Catalyst Supports <u>Alon Chapovetsky</u> , Ryan Witzke, Robert M. Kennedy, Evan C. Wegener, Fulya Dogan, Prajay Patel, Magali Ferrandon, Jens Niklas, Oleg G. Poluektov, Ning Rui, Sanjaya D. Senanayake, José A. Rodriguez, Christopher Johnson, Cynthia J. Jenks, A. Jeremy Kropf, Cong Liu, Massimiliano Delferro and David M. Kaphan Twitter LinkedIn	37
14 (<i>F</i>)	A Kinetic Modelling Strategy for Interrogating NO_x Selective Catalytic Reduction on Cu-exchanged Zeolites <u>Anshuman Goswami</u> , Siddharth H. Krishna, Yujia Wang, Casey B. Jones, Rajamani Gounder and William F. Schneider	38
15 (<i>Th</i>)	Role of Metal Speciation in the Direct Oxidation of Methane over Trimeric Nodes in a Metal-Organic Framework Material <u>Jacklyn N. Hall</u> , and Praveen Bollini	39
16 (<i>F</i>)	Dioxygen Activation Kinetics over Distinct Cu Site Types in Cu-CHA Zeolites <u>Laura N. Wilcox</u> , Daniel T. Bregante, Changming Liu, Christopher Paolucci, David W. Flaherty, and Rajamani Gounder Twitter LinkedIn	40
17 (<i>Th</i>)	Examining Acid-Base Cooperativity in Zeotype Catalysts to Direct Cross-Aldol Condensation Reactions between Aldehydes <u>Wenlin He</u> and Viktor J. Cybulskis	41
18 (<i>F</i>)	Effects of Pd particle size and water pressure on the structural transformation of Pd nanoparticles to mononuclear Pd(II) cations in CHA zeolites <u>Trevor M. Lardinois</u> , Harrison H. Lippie, Vamakshi Yadav, Christina W. Li, Rajamani Gounder	42

Oral Presentations

19 (Th)	Synthesis and Structural Characterization of Single-Site Mo(=O)₂ Catalytic Functionality Anchored on Reduced Graphene Oxide <u>Yiqi Liu</u> , Jiaqi Li, Anusheela Das, Hacksung Kim, Leighton O. Jones, Qing Ma, Michael J. Bedzyk, George C. Schatz, Yosi Kratish, and Tobin J. Marks	43
20 (F)	Influence of metal-ion identity on ethylene oligomerization catalyzed by single-site, silica supported metal catalysts: Interrogation by Density Functional Theory <u>Neha Mehra</u> , Nicole J. LiBretto, Guanghui Zhang, Jeffrey T. Miller and William F. Schneider Twitter LinkedIn	44
21 (Th)	Characterizing Supported Organovanadium Catalysts with Computational K-edge XANES <u>Prajay Patel</u> , Jeremy Kropf, David A. Kaphan, Massimiliano Delferro, and Cong Liu	45
22 (F)	Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles <u>Ying Yang</u> and Joseph T. Hupp	46
23 (Th)	Stabilization of Ni²⁺ Sites via Isolation on Polyoxometalate Defects for Ethylene Oligomerization <u>Yoonrae Cho</u> , Jessica Muhlenkamp, Allen Oliver and Jason C. Hicks	47
24 (F)	Investigating Gas-phase Reactivity of Ni Catalysts supported on a Zr Metal-Organic Framework NU-1000 <u>Qining Wang</u> , Justin M. Notestein, and Joseph T. Hupp Twitter	48
25 (Th)	Ethylene Oligomerization on Ni/UiO-66: Rates, Mechanism, and Site Densities <u>Benjamin Yeh</u> , Saumil Chheda, Jian Zheng, Julian Schmid, Ricardo Bermejo-Deval, Oliver Gutierrez-Tinoco, Johannes Lercher, Laura Gagliardi, and Aditya Bhan	49
26 (F)	Consequences of Active Site Proximity in MFI Zeolites for Brønsted Acid-Catalyzed Propene Oligomerization <u>Elizabeth E. Bickel</u> , Lauren E. Kilburn, Claire T. Nimlos, Young Gul Hur, David Hibbitts, Rajamani Gounder	50
27 (Th)	Two- and Three-Dimensional Finned Zeolite Catalysts <u>Heng Dai</u> , Yufeng Shen, Taimin Yang, Choongsze Lee, Wen Liu, Donglong Fu, Ankur Agarwari, Thuy T. Le, Michael Tsapatsis, Jeremy C. Palmer, Bert M. Weckhuysen, Xiujie Li, Paul J. Dauenhauer, Xiaodong Zou, Jeffrey D. Rimer	51

Oral Presentations

28 (F)	Seed-Assisted Synthesis of Self-Pillared Pentasil Zeolites <u>Rishabh Jain</u> , Aseem Chawla, Noemi Linares, Javier Garcia-Martinez, and Jeffrey D. Rimer	52
29 (Th)	Mechanistic study of formaldehyde-mediated reaction implicated in deactivation during methanol-to-hydrocarbons conversion <u>Zhichen Shi</u> , and Aditya Bhan	53
30 (F)	Effects of Al-Al Site Proximity in MFI Zeolites on Turnover Rates for Brønsted Acid-Catalyzed Methanol Dehydration Claire T. Nimlos, <u>Songhyun Lee</u> , John R. Di Iorio, Alexander J. Hoffman, David Hibbitts, Rajamani Gounder	54
31 (Th)	Multivalent Cations Function as Accelerants and Structure-directing Agents of Zeolite Crystallization <u>Yu Liang</u> , Allan J. Jacobson, and Jeffrey D. Rimer	55
32 (F)	Improved Al-rich Chabazite Synthesis Enables a Diverse Range of Gas Separations <u>Anthony Wallace</u> , Grant C. Kester, Chris Bongo, William Casteel, Garret Lau, Roger Whitley, and Charles G. Coe1	56
33 (Th)	Spatiotemporal Coke Coupling Enhances Para-Xylene Selectivity in Highly Stable MCM-22 Catalysts <u>Deependra Parmar</u> , Seunghyeok Cha, Taha Salavati-fard, Ankur Agarwal, Jeremy C. Palmer, Lars C. Grabow, and Jeffrey D. Rimer	57
34 (F)	CO_x Electrochemical Reduction with Additive Molecules towards Longer Chain Products <u>Kavitha Chintam</u> and Linsey Seitz Twitter LinkedIn	58
35 (Th)	A First Principles Computational Framework for the Analysis of Stability of Alloy Catalysts: Model Study of Pt₃Ni <u>Gaurav S. Deshmukh</u> , Pushkar Ghanekar, Jeffrey Greeley Twitter LinkedIn	59
36 (F)	Theoretical Insights into the Effects of Anion Identity and Concentration on Electrocatalytic Reduction of CO₂ on Au <u>Sahithi Gorthy</u> , and Matthew Neurock	61
37 (Th)	Insights from Pulsed Laser Deposition of Active OER Catalyst SrIrO₃ <u>Matthew E. Sweers</u> , Linsey C. Seitz	62
38 (F)	Exploring the Induction of Metal to Insulator Transitions in Strontium Iridate Perovskites for Water Electrolysis Applications <u>Jane Edgington</u> and Linsey Seitz	63
39 (Th)	Roles of Transition Metal Sulfides for Overcoming the Challenges of Electrocatalytic CO₂ Reduction <u>Foroogh Khezeli</u> , and Craig Plaisance Twitter LinkedIn	64

Oral Presentations

40 (F)	Catalytic Resonance Theory: Negative Scaling Relationships for Overcoming the Sabatier Limit <u>Sallye R. Gathmann</u> , M. Alexander Ardagh, C. Daniel Frisbie, and Paul J. Dauenhauer Twitter LinkedIn	65
41 (Th)	Copper-Bismuth Intermetallic Catalyst for Electrochemical CO₂ Reduction <u>Xiao Kun Lu</u> , and Linsey Seitz	66
42 (F)	Electrocatalytic H₂ evolution promoted by bioinspired (NCS2)Ni(II) complexes via Ni(I)/Ni(III) intermediates <u>Soumalya Sinha</u> , Giang N. Tran, Hanah Na, Nigam P. Rath, and Liviu Mirica	67
43 (Th)	Electrochemical carboxylation of benzyl chloride with CO₂ using low-coordinate cobalt electrocatalysts <u>Mayank Tanwar</u> and Matthew Neurock	68
44 (F)	The use of alcohol solvents to tune the selectivity in UiO-66 MOF catalyzed glucose isomerization <u>Roshan Patel</u> , Matheus Dorneles de Mello, Tyler R. Josephson, Michael Tsapatsasis, J. Ilja Siepmann, and Matthew Neurock	69
45 (Th)	Catalytic conversion of 5-hydroxymethyl furfural to commodity chemicals for applications in polymers and bioactive ingredients <u>Hochan Chang</u> , George W. Huber, and James A. Dumesic	70
46 (F)	Effects of Intramolecular Forces & Solvent Mixtures on Epoxidations in Ti-Zeolites <u>David S. Potts</u> , Daniel T. Bregante, Ohsung Kwon, and David W. Flaherty	71
47 (Th)	Production of Hexane-1,2,5,6-tetrol from Bio-renewable Levoglucosanol over Pt-WO_x/TiO₂: Kinetics and Catalyst Stability <u>Paolo Cuello-Penalosa</u> , Siddarth H. Krishna, Mario De bruyn, James A. Dumesic, George W. Huber	72
48 (F)	Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation <u>Kevin L. Sánchez-Rivera</u> , Theodore W. Walker, Nathan Frelka, Zhizhang Shen, Alex K. Chew, Jesse Barnick, Min Soo Kim, Panzheng Zhou, Steve Grey, James A. Dumesic, Reid C. Van Lehn, and George W. Huber*	73
49 (Th)	Role of Pore Polarity on Solvent Structuring for 1-Hexene Epoxidation within Ti-MFI <u>Chris Torres</u> , David S. Potts, Daniel T. Bregante, David W. Flaherty	74